Honors Chemistry

More Chapter 6 Study Questions

- 1. Use Hess' Law to calculate ΔH° for each of the following reactions and indicate whether the reaction is endothermic or exothermic. (Use the ΔH_{f}° Table as needed below.)
 - a) $2 \operatorname{HCl}(g) + \operatorname{Br}_2(l) \rightarrow 2 \operatorname{HBr}(g) + \operatorname{Cl}_2(g)$
 - b) 4 NH₃(g) + 3 O₂(g) \rightarrow 2 N₂(g) + 6 H₂O(l)
 - c) $N_2H_4(g) + 3 O_2(g) \rightarrow 2 NO_2(g) + 2 H_2O(l); \Delta H_f^{\circ}(N_2H_4) = +50.6 \text{ kJ}$
- 2. Given the following reaction: $2 P(s) + 3 Cl_2(g) \rightarrow 2 PCl_3(g) \Delta H = -574 \text{ kJ}$
 - a) How many moles of phosphorus are needed to produce 488 kJ?
 - b) How much heat is released when 122 g of PCl₃ are produced?
 - c) How many grams of Cl₂ are needed to produce 27.0 kJ?
- 3. When 1.00 g of KClO₃ is dissolved in 50.0 g of water in a coffee-cup calorimeter, the temperature drops from 25.00 to 23.36°C. Calculate Δ H for the process KClO₃(s) \rightarrow KClO₃(aq)
- 4. Write a balanced chemical equation for the complete combustion of liquid benzene, C_6H_6 . Then use Hess' Law to calculate ΔH for this reaction. $\Delta H_f^{\circ}(C_6H_6) = +48.5 \text{ kJ}$
- 5. Given the reaction: $4 \text{ PH}_3(g) + 8 \text{ O}_2(g) \rightarrow P_4 \text{O}_{10}(s) + 6 \text{ H}_2 \text{O}(g) \Delta \text{H} = -4500 \text{ kJ}.$ The heat of formation of phosphine, PH₃, is +9.2 kJ/mole. Calculate the heat of formation of P₄O₁₀.